ما به دنبال یک مهندس داده با تجربه و درک عمیق از سیستمهای دریاچههای داده، انبارهای داده و پایگاه داده هستیم. در این نقش شما مسئول طراحی، توسعه و بهینهسازی زیرساختهای داده در مقیاس بزرگ خواهید بود تا یکپارچگی بینقص، دسترسی بالا و مقیاسپذیری را تضمین کنید. کاندید ایدهال باید در روشهای مدیریت داده تخصص قوی داشته باشد و بتواند راهحلهای پیشرفتهای را برای پشتیبانی از جریانهای کاری تحلیلی پیچیده و نیازهای بلادرنگ (real-time) پیادهسازی کند. همچنین شما با تیمهای هوش مصنوعی همکاری نزدیک خواهید داشت تا مدلها و راهحلهای هوشمندی ایجاد کنید که از دادههای ما به طور موثر بهرهبرداری کنند.
مسئولیتهای کلیدی:
شرایط احراز:
مهارتهای ترجیحی:
Job Description and Responsibilities
We are looking for a Data Engineer with experience and a deep understanding of data lake, data warehouse and database systems. In this role, you will be responsible for designing, developing and optimizing large-scale data infrastructures to ensure seamless integration, high availability and scalability. The ideal candidate should have strong expertise in data management methodologies and be able to implement advanced solutions to support complex analytical workflows and real-time needs. You will also work closely with AI teams to create intelligent models and solutions that effectively leverage our data.
Key Responsibilities
Data Pipeline Development: Design, develop and maintain scalable ETL/ELT pipelines to efficiently extract, transform and load data into diverse systems. Ensure data consistency, reliability and auditability.
Data Lake and Warehouse Management: Lead the design, optimization and maintenance of data lakes and warehouses to efficiently organize and retrieve data, facilitating data-driven decision-making.
Database Management: Manage and optimize relational and NoSQL databases to ensure high performance, data integrity, and security. Use techniques such as indexing, sharding, and replication.
Data Integration and Aggregation: Develop workflows to integrate and aggregate data from multiple sources, creating rich datasets suitable for analysis and reporting.
Performance Optimization: Monitor and continuously improve the performance of data lakes, data warehouses, and related pipelines to manage large-scale data ingest and transformation.
Data Quality Assurance: Ensure data accuracy and reliability by implementing and enforcing data quality standards, including automated validation, anomaly detection, and reconciliation processes.
Teamwork: Work closely with data scientists, business analysts, and AI engineers to ensure that the data infrastructure supports analytics, machine learning, and business goals; this collaboration enables the seamless development of AI models.
Infrastructure Support: Work with the DevOps team to orchestrate the deployment of cloud data infrastructure, leveraging “infrastructure as code” tools, and ensuring scalability, fault tolerance, and disaster recovery.
Skills and Qualifications
Communication Skills: Strong written and spoken English communication skills to effectively communicate technical concepts to technical and non-technical stakeholders.
Experience: At least 3 years of professional experience in data engineering, with hands-on expertise in managing complex data lakes, data warehouses, and distributed databases.
Data Lakes: Proven experience designing and implementing data lake architectures using tools such as Amazon S3, Azure Data Lake, or Google Cloud Storage.
Data Warehouse: Expertise in platforms such as Amazon Redshift, Snowflake, or Google BigQuery, with a focus on advanced schema design and query optimization.
Database Administration: Strong SQL proficiency, with experience managing relational databases (such as PostgreSQL and MySQL) and NoSQL systems (such as MongoDB and Cassandra).
ETL Development: Proficiency in ETL tools such as Apache Airflow, Talend, or Informatica to automate data workflows.
Programming: Strong skills in Python, with an emphasis on writing clean, modular, and documented code.
Big Data Processing: Deep knowledge of big data frameworks such as Apache Spark, Hadoop, or Kafka to process distributed and streaming data.
Cloud Platforms: Hands-on experience with cloud platforms such as AWS, Google Cloud, or Azure, including use of cloud tools and services.
Real-Time Streaming: Experience with real-time data streaming platforms such as Apache Kafka or Amazon Kinesis to maintain real-time pipelines.
Preferred Skills
Containerization and Orchestration: Experience with Docker and Kubernetes to containerize and manage distributed workloads.
Data Visualization: Familiarity with tools such as Power BI or Tableau to support business insights and reporting.
این آگهی از وبسایت ایران تلنت پیدا شده، با زدن دکمهی تماس با کارفرما، به وبسایت ایران تلنت برین و از اونجا برای این شغل اقدام کنین.