نشان کن
کد آگهی: KP7658356870

In the Story of Snappfood, we believe in creating value that goes beyond the ordinary. We are wiling to establish innovative tendencies and are eager to have you on our team to help us get through our business challenges with creativity, intelligence, and agility.We are waiting for you to continue this story.Responsibilities:Design, develop, and maintain scalable and reliable data pipelines and ETL processes.Collaborate with data analysts, data scientists, and software engineers to gather data requirements and ensure data integrity and quality.Utilize stream processing frameworks like PySpark to process real-time data efficiently.Implement and optimize big data frameworks like Hadoop to handle large volumes of data.Work with message brokers like Kafka and RabbitMQ to transport and process data in a distributed environment.Develop and maintain data models and database schemas to support business needs.Requirements:Bachelor’s or Master’s degree in Computer Science, Data Science, or a related field.Proven experience as a Data Engineer or similar role.Strong programming skills in Python or Scala.Experience in stream processing frameworks like PySpark.Proficiency in big data frameworks like Hadoop.Familiarity with message brokers like Kafka and RabbitMQ.Knowledge of SQL databases, including ClickHouse and MySQL.Experience with NoSQL databases.Experience with containerization and orchestration technologies like Docker and Kubernetes.Strong problem-solving and analytical skills.Excellent communication and collaboration abilities.Benefits:Vouchers for vacation, Gym, Therapy Sessions, Intervnet CostsComplementary InsuranceEducational platform of advanced coursesSnappfood’s Discount codesLoans

اسنپ فود
در تهران
در وبسایت ایران استخدام  (1 هفته پیش)
اطلاعات شغل:
نوع همکاری:  تمام‌وقت
مدرک تحصیلی مورد نیاز:  کارشناسی - فوق‌لیسانس
ساعت کاری:  تمام وقت
متن کامل آگهی:
In the Story of Snappfood, we believe in creating value that goes beyond the ordinary. We are wiling to establish innovative tendencies and are eager to have you on our team to help us get through our business challenges with creativity, intelligence, and agility.
We are waiting for you to continue this story.
Responsibilities:
Design, develop, and maintain scalable and reliable data pipelines and ETL processes.
Collaborate with data analysts, data scientists, and software engineers to gather data requirements and ensure data integrity and quality.
Utilize stream processing frameworks like PySpark to process real-time data efficiently.
Implement and optimize big data frameworks like Hadoop to handle large volumes of data.
Work with message brokers like Kafka and RabbitMQ to transport and process data in a distributed environment.
Develop and maintain data models and database schemas to support business needs.
Requirements:
Bachelor’s or Master’s degree in Computer Science, Data Science, or a related field.
Proven experience as a Data Engineer or similar role.
Strong programming skills in Python or Scala.
Experience in stream processing frameworks like PySpark.
Proficiency in big data frameworks like Hadoop.
Familiarity with message brokers like Kafka and RabbitMQ.
Knowledge of SQL databases, including ClickHouse and MySQL.
Experience with NoSQL databases.
Experience with containerization and orchestration technologies like Docker and Kubernetes.
Strong problem-solving and analytical skills.
Excellent communication and collaboration abilities.
Benefits:
Vouchers for vacation, Gym, Therapy Sessions, Intervnet Costs
Complementary Insurance
Educational platform of advanced courses
Snappfood’s Discount codes
Loans

این آگهی از وبسایت ایران استخدام پیدا شده، با زدن دکمه‌ی تماس با کارفرما، به وبسایت ایران استخدام برین و از اون‌جا برای این شغل اقدام کنین.

هشدار
توجه داشته باشید که دریافت هزینه از کارجو برای استخدام با هر عنوانی غیرقانونی است. در صورت مواجهه با موارد مشکوک،‌ با کلیک بر روی «گزارش مشکل آگهی» به ما در پیگیری تخلفات کمک کنید.
گزارش مشکل آگهی
تماس با کارفرما
این آگهی رو برای دیگران بفرست
نشان کن
گزارش مشکل آگهی
جمعه 19 بهمن 1403، ساعت 08:56